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Abstract—Keystroke dynamics is one solution to enhance the
security of password authentication without adding any disrup-
tive handling for users. Industries are looking for more security
without impacting too much user experience. Considered as a
friction-less solution, keystroke dynamics is a powerful solution to
increase trust during user authentication without adding charge
to the user. In this paper, we address the problem of user
authentication considering the keystroke dynamics modality. We
proposed a new approach based on the conversion of behavioral
biometrics data (time series) into a 3D image. This transformation
process keeps all the characteristics of the behavioral signal.
The time series do not receive any filtering operation with this
transformation and the method is bijective. This transformation
allows us to train images based on convolutional neural networks.
We evaluate the performance of the authentication system in
terms of Equal Error Rate (EER) on a significant dataset and
we show the efficiency of the proposed approach on a multi-
instance system.

Index Terms—Behavioral biometrics, keystroke dynamics, user
authentication, security, convolutional neural networks.

I. INTRODUCTION

The development of Information and Communication Tech-
nologies (ICT), as well as improvements in ambient intelligent
technologies, such as sensors and smart phones, have led
to the rapid development of smart environments [1], [2].
Considerable resources can be saved if sensors can help staff
record and monitor users or automatically report any abnormal
behavior [2], [3]. For example, in payment systems, in order
to ensure the application of strong customer authentication,
it is necessary to require adequate security features1 based
on authentication factors such as knowledge, possession, in-
herent or biometric factors [4]. Knowledge factors rely on
information that the user knows such as a password, PIN, or
shared secret. Possession factors are based on an element, an
object that the user possesses such as a smart card, a USB
key, a smartphone, a security token. Inherent or biometric
factors are the only factors that are directly related to the user.
These factors are useful in reducing the risk that elements
such as algorithm specifications, key length, and information
entropy will be discovered, disclosed, and used by unautho-
rized parties [5]. When Multi Factor Authentication (MFA) is
requested, using Seamless biometrics, as behavioral, improve
the security without decreasing the User Experience (UX).

1http://data.europa.eu/eli/reg_del/2018/389/oj

Increasing performance of such biometrics is a high need of
current industrials.
Biometrics is now a common solution for user authentication
for logical access control, as for example when browsing
the Internet on a laptop [5]. There are two main
biometrics modalities namely morphological and behavioral.
Behavioral biometrics is the process of measuring user’s
behavioral tendencies resulting from both psychological and
physiological differences between individuals. Behavioral
methods include keystroke dynamics, mouse dynamics, voice
recognition, gait, signature verification and Graphical User
Interface (GUI) usage analysis [2]. Due to the variability
of the human body and mind, the adoption of this type of
biometrics has lagged behind physiological biometrics [6].

Figure 1: Overview of the different use cases of keystroke
dynamics systems.

Keystroke dynamics is a behavioral biometric modality
consisting in analyzing the way a user types on a keyboard [7].
Figure 1 gives the different use cases of keystroke dynamics.
In this work, we focus on passphrase authentication where
all users type the same password. The authentication is
realized by only analyzing the way of typing. This approach
is convenient for users as no password has to be remembered
but is more challenging for research in term of performance.

http://data.europa. eu/eli/reg_del/2018/389/oj


The proposed method is to implement an authentication
system using a behavioral biometric modality : keystroke
dynamics.

We assume that by extracting only the keystroke characteristics
of each user, it is possible to apply a promising and low cost
authentication system compared to many others biometric
systems, as it does not require any additional sensor and
is easy for the user to perform [8]. Keystroke dynamics as
a behavior biometric modality is described by the way of
typing on a keyboard (on a laptop) i.e., times computed for
key events on the keyboard. Since keystroke dynamics allows
to profile users by the way they type on a keyboard, the
use of characteristics such as typing behaviours shows that
it is possible to identify or authenticate a person knowing
his/her typing style [5] . Besides, research has been conducted
in recent years to find the best algorithm to perform the
authentication task. In this paper, we intend to answer how
well deep learning approaches could perform for passphrase
user authentication by using keystroke dynamics data. In
this work, an image transformation is applied to keystroke
dynamics considered as time series, before applying deep
learning architectures.

We propose a proof of concept implementation and we study
the performance of different deep learning architectures.

The paper is organized as follows. Section II contains related
work on authentication from keystroke dynamics systems.
Section III presents the proposed method and the different
deep learning models with the specifications and the impact
of different parameters on our evaluation system. Section IV
draws the experimental protocol. Section V details the exper-
iments on benchmark datasets and the results we obtained.
Section VI gives the conclusions of this work and some
perspectives.

II. RELATED WORK

In the literature, most of works are based on conventional
machine learning for user authentication (based on behavioral
biometric modality). Although the proposed algorithms are
excellent, the results can be improved. Therefore, this research
proposed an image architecture (for a chosen behavioral bio-
metric modality) and a deep learning authentication process
using neural networks for user authentication based on a
passphrase.

A. Authentication factors

Keystroke dynamics can be used for different goals (iden-
tification, authentication, soft biometrics) in different cases
(free text, fixed text, same-text) [2], [16]. Like any biometric
solution, keystroke dynamics systems require sets of prior
knowledge (references) that are used to verify the newly
acquired data (sample). For identification and authentication, a
reference describes the typing style of a specific user, while for

soft biometrics, a reference describes the typing style of a set
of users (e.g., male, female, left/right handed). The references
are then used to retrieve, or verify, the identity of the user who
typed from a sample [17].

B. Keystroke dynamics

Keystroke typing dynamics allows to profile users (identifica-
tion, authentication, gender recognition, profiling) by analyz-
ing the way a user is typing on a keyboard as for example
when surfing on the Internet. Keystroke dynamics was first
used in 1975 [18] and the basic idea was to use a keyboard
to automatically identify individuals. In the preliminary report
dressed by Gaines et al. [19], seven secretaries typed several
paragraphs of text and the researchers showed that it was
possible to differentiate users by their typing habits [20].
Keystroke dynamics can be a multi-factor authentication
scheme as we combine the knowledge of a password and
the way of typing. In case of attack, it can be revoked by
changing the password. Nevertheless, some studies showed it
is possible to profile users on Internet (gender recognition,
age category) [21] without the consent or awareness of the
users [2], [20]. Many studies have shown that it is possible
to authenticate an individual by typing on a mobile device
or keyboard. Table I lists the main works undertaken by
researchers to develop neural network based authentication
systems. We can note that these works are tested on small
databases. In this work, we want to study how recent deep
learning methods can improve these results on a representative
dataset. We detailed the proposed approach in the next section.

III. PROPOSED ARCHITECTURE

We describe the proposed system based on keystroke dy-
namics in Figure 2. It is composed of different steps namely
data collection (signal-to-image transformation), features ex-
traction and verification process. We detail in the following
sections these steps.

A. Signal processing : matrix representation

Time series analysis in the frequency domain plays an essential
role in signal processing. The same is true for image analysis
in the frequency domain, which plays a key role in computer
vision and was even part of the standard pipeline in the early
days of deep learning [22]. In this paper, we propose a new
method by transforming the time series (behavioral biometric
signal) into an image, i.e., we convert a keystroke dynamics
vector of size 1×m, into a matrix of size n× n such that:
m= n×(n−1)/2. This is done though squareform() 2 function
in MatLab.
One of the properties of the squareform() function is to
convert a distance vector into a distance matrix, and vice
versa.

Conversely, the squareform of matrix V is vector x. The
squareform() function is bijective.

2https://fr.mathworks.com/help/stats/squareform.html

https://fr.mathworks.com/help/stats/squareform.html


Table I: Overview of keystroke dynamics for user authentication-related work using neural networks

Study Features Classification Testing type Env. #Users Samples EER

Andrean et al. [9]
Latency,
Trigraph/N-
graph

MLP Static, Dynamic Controlled 51 400 16.14%

Lu et al. [10]
Latency,
Trigraph/N-
graph

CNN+RNN - Controlled 260 - 05.97%

Çeker et al. [11] - CNN Static, Dynamic Controlled 133 - 06.50%

Alpar [12] Trigraph/N-graph
Gauss-newton
based neural
network

- - 13 780 05.10%

Roth et al. [13] Digraph/N-graph Digraph Static Static, Dynamic Controlled 50 - 11.00%

Harun et al. [14] Latency NN, dist. classi-
fier Static Controlled 15 150 22.90%

Revett et al. [15]
Latency,
Trigraph/N-
graph

Specht
Probabilistic
NN

Static Controlled 50 10000 05.70%

In a database sample composed of 110 users, time series
composed of 378 features is represented by a matrix of size
28 × 28. The matrix is displayed with imagesc() 3 function
in MatLab which display image with scaled colors. We finally
have a 3D image on RGB format. Figure 3 shows the step-by-
step instructions when computing the time series into an 3D
matrix image. The transformation is done on each sub-database
separately and on the fusion of sub-databases in order to build
a new database of images.
70% of the obtained images were used for training
(enrollment)and the remaining 30% were used for validation
(verification) both on deep models used for user classification
and feature extraction. The matrix representation for user’s
behavioral typing time series transformation is illustrated in
Figure 3. This signal to image transformation allow us to
use the 2D convolutional networks to build feature vectors.
This will allow us to compare these feature vectors to the
reference template vectors to compute the performance metric.

3https://fr.mathworks.com/help/matlab/ref/imagesc.html

B. Deep learning architectures

Deep learning algorithms have been used in recent
years in several fields and are becoming more and more
widespread [23], [24].

In this work, we used six deep networks namely ResNet-
101, DarkNet-53, GoogleNet, ShuffleNet, DenseNet-201 and
SqueezeNet that are models pretrained on a subset of the
ImageNet database4. In the literature, these are the most recent
successful deep learning architectures for image classifica-
tion [25] since authentication is the result of a classification
problem. Table II gives the architecture and the optimization
hyper-parameters for the six used deep networks where the
network depth is defined as the largest number of sequential
convolutional or fully connected layers on a path from the
input layer to the output layer. The inputs networks take RGB
images format. We used these convolutional networks to build
a features vector as output, which is then compared to the
reference/test model.

4https://image-net.org

Figure 2: Architecture of our proposed keystroke dynamics based authentication system.

https://fr.mathworks.com/help/matlab/ref/imagesc.html
https://image-net.org


Figure 3: Graphic illustration process of time series transformation into matrix.

Table III: Description of passphrases used in the GREYC-
NISLAB database. Note : PT = (P1+P2+P3+P4+P5)

Password Description Size Features

P1 leonardo dicaprio 17-char 64
P2 the rolling stones 18-char 68
P3 michael schumacher 18-char 68
P4 red hot chilli peppers 22-char 84
P5 united states of america 24-char 92
PT fusion of features 99-char 376

C. Scoring algorithms

Deep architectures as explained previously generate feature
vectors that can be used as reference/test templates. We need
a matching algorithm to compare and make the authentication
decision. Many distance metrics can be used to compute a
distance score [5] from a reference (xs) and a sample (xt ) such

as:
• Minkowski distance

d =
n

∑
j=1

|xs j − x
′
t j| (1)

• Euclidean distance

d2 = (xs − xt)(xs − xt)
′

(2)

• Cosine distance

d = 1 − xsx
′
t√

(xsx
′
s)(xtx

′
t)

(3)

Once we obtain a biometric score, we decide if the user
is authenticated by a simple thresholding approach (accept
when the score is upper a set threshold).

Table II: Architectures and optimizations hyper-parameters for the deep learning approaches

Models #Layers #Depth Image Input Size Activate Normalize Algorithm Loss #Epochs #Batch #Learning rate

ResNet-101 347 101 224-by-224 ReLU Batch SGDM cross-entropy 500 10 0.001
ShuffleNet 172 50 224-by-224 ReLU Batch SGDM cross-entropy 500 10 0.001
GoogleNet 144 22 224-by-224 ReLU Batch SGDM cross-entropy 500 10 0.001
DarkNet-53 184 53 256-by-256 ReLU Batch SGDM cross-entropy 500 10 0.001

DenseNet-201 708 201 224-by-224 ReLU Batch SGDM cross-entropy 500 10 0.001
SqueezeNet 68 18 227-by-227 ReLU Batch SGDM cross-entropy 500 10 0.001



IV. EXPERIMENTAL PROTOCOL

We draw in this part the experimental protocol we follow
in this work. We detail the used biometric datasets and the
performance metrics.

A. GREYC-NISLAB
The GREYC-NISLAB database [26] for keystroke dynamics
is constituted of five passwords entered by 110 users. There
were 10 samples per password per user for each way of
typing. The best password is a sentence according to experts.
We have in total 5500 data samples which correspond to
110 × 10 × 5 keystroke dynamics samples proposed in our
benchmark database.
For this modality, 5 passphrases were presented to users as
shown in Table III, which are between 17 and 24 characters
(including spaces) long, chosen from some of the well-known
or popular names or artists (known both in France and Nor-
way), denoted P1 to P5. The GREYC Keystroke software has
been used to capture biometrics data. PT denotes the fusion
of the 5 passwords (fusion of features) [2]. Representative
keystroke dynamics databases are very heavy to realize. One of
the biggest advantages of using the GREYC-NISLAB database
is that we have several passwords for the same users. To the
best of our knowledge, such transformation (Signal-to-Image)
approach on keystroke dynamics database does not exist in the
literature up to now.
Among the transformed signal-to-image samples of each user,
7 out of 10 samples are used for training and testing data.

B. Performance metrics

In the authentication/verification stage, the raw data is acquired
and processed to extract the biometric template. This biometric
template is then compared with the existing reference tem-
plates in the database. A matching algorithm is then used to
determine how closely the biometric matches with an existing
template in the database. We compute the inter and intra class
score according to the extract features. Using the distance
metrics (Minkowski, Euclidean and Cosine), we evaluate the
degree of similarity between the password entry between each
user.
Two important error rates are used to determine the per-
formance of a biometric authentication system according to
ISO19795 [27]: False Match Rate (FMR) and False Non-
Match Rate (FNMR).

• FMR is the proportion of a specified set of completed
non-mated comparison trials that result in a comparison
decision of match.

• FNMR is the proportion of completed mated comparison
trials that result in a comparison decision of non-match.

The Equal Error Rate (EER) is when the FMR is equal
to the FNMR as depicted in Figure 4. It can be seen as a
compromise of usability and security. The goal of a matcher
is to minimize this value. The lower the value of EER, the
better the performance of the authentication system is. This
error rate is the most commonly used in the literature to
illustrate the performance of biometric systems. In this work,

Figure 4: Relationship between FMR, FNMR and EER

we evaluate the proposed architecture in terms of EER.

V. RESULTS AND DISCUSSION

In this section, we present the experimental results we
obtained. We tried to structure them by answering some
questions concerning the performance of the proposed method.

A. Which performance can we obtain on each dataset?

First, we consider a single password, i.e. we take each database
separately to generate results. We used 1100 samples in total
(110 users * 10 entries) taking 70% for the learning phase
and 30% for the testing one. We illustrate the six architec-
tures (namely ResNet-101, ShuffleNet, DarkNet, GoogleNet
DarkNet-53, DenseNet-201 and SqueezeNet) and we draw the
model and the metric that offer the best performances on each
database separately. This is illustrated by Figure 5.
We observe that GoogleNet offers the best performance with
an EER value equal to 18.43% (P1), 14.20% (P3) and 14.80%
(P5). Sometimes, ResNet-101 performs well with a EER value
to 14.23% (P2) and 15.70% (P4). We can also note that
we do not have the same performance from one password to
another. So using 7 samples for a user as reference template
generation does not provide very good results (with an EER
value between 14% to 18%). Obviously, if we had much more
data, we could expect to obtain a better performance.

B. Which performance can we obtain on a larger dataset?

In this section, we merge all the sub-databases (fusion of
features) to create a new dataset called PT (concatenation of
P1, P2, P3, P4 and P5). We took 70% of data for the learning
phase and 30% for the testing one. Figure 5 draws the obtained
results for a verification on PT .
A comparative analysis of the six architectures on PT database
allows us to identify the best performance for a static au-
thentication. Its given by ResNet-101 (EER = 07.55%) and
GoogleNet (EER = 07.45%) architectures.
Performance is largely improved because we used more data
that is general requested for deep learning techniques. This



Figure 5: EER (×100) rate on deep architectures for P1, P2, P3, P4, P5 and PT sub-databases
.

illustrates the need of large keystroke dynamics (in terms of
users and samples per user) to optimize the performance of
deep learning methods on this biometric modality.
Figure 5 shows that the Cosine distance metric provides the
best EER scores compared to the Minkowsky distance and
the Euclidean distance, regardless of the architecture and sub-
databases used, except for DenseNet-201 on the PT case. We
keep the Cosine distance in the rest of this work.

C. Which performance can we obtain if the user types more
than one passphrase?

In this part, it is assumed that a person types more than
one passphrase on the keyboard to authenticate himself/herself.
We merge by summing the inter-class and intra-class scores
(fusion of score) considering the number of typed passwords.
We also took 70% of data for the learning phase and 30%
for the testing one. Table IV shows the obtained results if we
used the five typed passphrases (i.e. simulating a user typed
the 5 passphrase to be authenticated). GoogleNet comes out
as the best method with an EER score of 04.49% as presented
in Table IV. GoogleNet is ahead of ResNet101 (06.70%) and
ShuffleNet (07.34%).

Table IV: Performance evaluation on the multi-instance bio-
metric system by fusion of features and scores level on PT .

Models (EERcosine) Fusion of features Fusion of scores

ResNet-101 07.55% 06.70%
ShuffleNet 13.59% 07.34%
GoogleNet 07.45% 04.89%
DarkNet-53 14.96% 11.11%

DenseNet-201 26.18% 10.50%
SqueezeNet 12.87% 08.68%

To complete these results, we studied the obtained perfor-
mance versus the number of passphrases typed by an user
in a multi-instance context. Figure 6 highlights the EER value
obtained for each case.

• In the most classical case, if we use 2 inputs (i.e. login
+ password), we obtain an EER value between [9.17%−
22.95%] illustrated by block 2 in Figure 6.

• If we have 3 inputs (i.e. login + password + secret ques-
tion), we have an EER value between [6.89%−17.80%]
represented by block 3.

• If we use 4 inputs (i.e. login + 2 passwords + secret ques-
tion), we have an EER value around [5.95%− 13.67%]
depicted by block 4.

• If we use 5 inputs, we get an EER value around [4.89%−
11.11%] depicted by block 5. Even if this scenario is less
realistic, it shows we can decrease easily the EER value
for this kind of authentication.

We note that the EER value obtained when applying the fusion
of score of sub-databases decreases for each architecture. It
also appears from this work that the more information we have,
the better the performance can be, that it is not surprising.
Having a larger database, we could expect to get better results
(i.e. with an EER value very close to 0%) increasing the
number of samples per user.

D. Discussion

Keystroke authentication is totally based on the routines that
the users have, since they probably entered the same password
numerous times. In this case, their typing styles become so
unique and hard to imitate, which is also the core of the
keystroke recognition systems [12]. Neural networks have the



Figure 6: EER rate on deep architectures for the multi-instance biometric system. In block 1, we have P1, P2, P3, P4 and P5
sub-database. In block 2, we have the fusion of inter and intra class score from (P1+P2) to (P4+P5) sub-databases respectively.
In block 3, (P1+P2+P3) to (P2+P3+P5). In block 4, (P1+P2+P3+P4) to (P2+P3+P4+P5) and in Block 5, (P1+P2+P3+P4+P5)

.

Table V: Comparison with other published works in keystroke dynamics. EER values are reported (note some works have used
non representative datasets). For each reported works, different biometric samples are merged.

Databases Author/S (ref) Years Classifiers EER
GREYC-NISLAB This Paper 2021 GoogleNet 04.89%
GREYC-NISLAB Idrus et al. [28] 2015 SVM [08.45%−10.63%]

Clarkson II Li et al. [29] 2021 CNN & CNN-GRU [07.55%−07.74%]
Synthetic Ayotte et al. [30] 2021 SVM & MLP [04.90%−05.46%]

GREYC 2009 vs WEB GREYC Mhenni et al. . [31] 2018 kNN [06.61%−07.08%]
GREYC Keystroke Zhong et al. [32] 2015 SVM [08.45%−10.65%]

advantage of being able to handle many parameters. However,
they can be slow not only during training but also in the
application phase. The purpose of this work is to analyze
several information entered by a user in order to authenticate
him/her.
To the best of our knowledge, the database resulting from the
keystroke dynamics on a laptop used in this work (GREYC-
NISLAB [26] database) is one of the most representative
database that currently exist on this behavioral biometric
modality despite the limited number of entries per user.
A complete list of available keystroke dynamics datasets has
been listed by Monaco [33]. As it can be seen, most of datasets
have less than 200 individuals and few samples are available
for each user. The collection of such datasets is very time
consuming, this is the main reason why there is not more
very large datasets like for the face modality [17], [21] which
is a crucial problem for the research in this area.
If we focus on research works that has been performed on
the GREYC-NISLAB database, we can compare our results.
Idrus et al. [28] obtained an EER value of 10.63% using
a SVM-based method. They further improved the keystroke

dynamics authentication accuracy from an EER value of
8.45%. Considering the same database, the proposed approach
with GoogleNet performs better with an EER value of 04.89%
(Table V).
To complete this comparison, we consider other works on
different biometric databases. Of course, it is not possible to
have a fair comparison but we give these values for illustration.
When different keystroke dynamics samples are fused, Ayotte
et al. [30] (2021) obtained an EER value of 04.90% with MLP
method. They used a different database than the GREYC-
NISLAB one (and is private). Both of these works are based
on the content knowledge. This is not the case with our work
because we place ourselves in an attack situation, that is to
say that we consider that the attacker (passphrase situation)
knows the password. We try to authenticate a person only by
the way he/she types.
Multi-instance system consists of capturing samples of two or
more different instances of the same biometric characteristics.
Table IV shows that for a verification performed on keystroke
dynamics, the best verification scores are obtained on the
fusion of score as opposed to the fusion of feature when using



six different deep neural networks architectures.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a new keystroke dynam-
ics system based in deep learning for user authentication.
Keystroke dynamics on a laptop have been studied as be-
havioral biometrics because it has a number of advantages,
it is low cost, there is no additional tool or constraint for
the user, the user does not need to use and learn other tools
to use the keyboard dynamics. This study answer how well
deep learning approaches could perform for passphrase user
authentication by using keystroke dynamics data and shows
that keystroke dynamics is indeed an available method to
enhance the security of PIN code based authentication on
laptop or mobile devices for example. We also show that the
new framework outperforms the state-of-the-art methods in
terms of EER score.
For future research, we plan to add psychological features
such as the user’s emotions when entering passwords for
the training and testing process to improve accuracy since
emotional states could be identified from his or her input
behavioral style. We intend also to improve (and expand) the
keystroke dynamics datasets that are needed if we are to make
further significant progress on this authentication problem.
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